Montando um PC passo-a-passo

 

Qualquer micreiro que se preze, não compra PCs montados; compra as peças e monta ele mesmo :). Este é um tutorial "mais que completo" sobre montagem de micros, que esmiuça os passos necessários e explica os "porquês" de muitas etapas, de forma que acaba sendo interessante não apenas para quem está começando, mas também para os já experientes.

 

Depois de desempacotar as peças, a primeira coisa a fazer é mudar a posição da chave de tensão da fonte de alimentação. Por segurança, todas as fontes vem de fábrica com a posição no "220V", já que ligar a fonte chaveada para 220 em uma tomada de 110 não causa danos, bem diferente do que acontece ao fazer o contrário. O problema é que a lei de murphy faz com que você sempre esqueça de trocar a chave de posição, fazendo com que mais adiante o micro simplesmente não ligue e você fique sem saber o por que. :)

index_html_2a981a1f

Apesar de muitas vezes não parecer, o gabinete é um componente bastante barato e fácil de fabricar. A matéria prima básica são chapas de aço bastante finas, que são dobradas e prensadas até chegar à forma final. Este aço bruto é bastante barato e pouco resistente, ao contrário do aço temperado usado em aplicações mais nobres. Os gabinetes mais baratos chegam a custar menos de 100 reais e quase metade deste valor é referente à fonte de alimentação que vem de brinde.

O maior problema com os gabinetes baratos é a presença de rebarbas, que agem como lâminas, cortando os dedos dos descuidados. A presença de rebarbas é sinônimo de gabinete de baixa qualidade, uma dica para evitar o fabricante na próxima compra, para não cometer o mesmo erro duas vezes.

Além da questão do acabamento, existe uma tendência crescente de substituir o aço por alumínio nos modelos mais caros. Existem ainda gabinetes de materiais alternativos, voltados para quem gosta de casemod, feitos acrílico, resina, vidro ou até mesmo madeira.

Além do material usado, acabamento e da questão estética de uma forma geral, os gabinetes se diferenciam pela presença de portas USB ou conectores de áudio frontais (ou outros acessórios) e pela questão da ventilação.

De qualquer forma, a principal função do gabinete é servir como um suporte para os demais componentes. Você pode muito bem montar um micro dentro de um armário, de uma gaveta, ou até mesmo dentro de uma caixa de pizza, mas sem uma fonte de alimentação com um mínimo de qualidade, você corre o risco de ver pentes de memória queimados, HDs com badblocks, capacitores estufados na placa-mãe e assim por diante em pouco tempo. DE uma forma geral, as fontes que acompanham os gabinetes valem o que custam (muito pouco), por isso você deve procurar substituí-las por fontes melhores em qualquer micro com componentes mais caros, ou em micros de trabalho, que vão desempenhar um papel importante.

Como (com exceção de alguns modelos high-end) todas as fontes utilizam o mesmo tamanho padrão, é muito fácil substituir a fonte por outra.

 

Voltando à montagem, o próximo passo é tirar ambas as tampas do gabinete. Aproveite para remover também as tampas das baias dos drives de CD e DVD que for utilizar.

index_html_m7dc7ed34

Remova também a tampa do painel ATX, ao lado das aberturas dos exaustores. Cada placa-mãe utiliza uma combinação própria de conectores, de forma que o que vem com o gabinete é inútil, já que nunca combina com os conectores da placa-mãe. Por isso o substituímos pela tampa que acompanha a placa-mãe, feita sob medida para ela. A tampa do painel ATX é chamada em inglês de "I/O plate", embora o nome seja pouco usado por aqui.

index_html_633d0845

A parte interna do gabinete possui um padrão de furação, destinado aos suportes e parafusos que prendem a placa-mãe. Todos os parafusos necessários devem vir junto com o gabinete:

index_html_5ae99b6a

Dependendo da marca e modelo, podem ser usados pinos plásticos, como os da esquerda, encaixes como os da direita ou (mais comum) espaçadores metálicos como os do centro. Existem ainda suportes plásticos como os dois na parte inferior da foto, que podem ser usados como apoio, inseridos nos furos na placa-mãe que não possuam par no gabinete. Eles eram mais usados antigamente, na época dos gabinetes AT, mas é sempre bom ter alguns à mão.

O conjunto com os parafusos e espaçadores necessários deve vir junto com o gabinete. Ele é chamado de "kit de montagem" pelos fabricantes. Normalmente o gabinete vem também com o cabo de força, com exceção dos modelos sem fonte, onde o cabo vem junto com a fonte avulsa.

As placas ATX possuem normalmente 6 furos para parafusos e mais dois ou três pontos de apoio adicionais, que podem ser usados pelos suportes plásticos. A posição deles, entretanto, varia de acordo com a distribuição dos componentes na placa, de forma que o gabinete inclui um número muito maior de furos. Com o tempo, você acaba aprendendo a descobrir quais usar "de olho", mas no início você acaba perdendo tempo comparando as furações da placa e do gabinete para ver onde colocar os suportes.

Uma dica é que você pode usar uma folha de papel para achar mais facilmente as combinações entre a furação da placa-mãe e a do gabinete. Coloque a placa-mãe sobre o papel e use uma caneta para fazer pontos no papel, um para cada furo disponível. Depois, coloque o papel sobre a chapa do gabinete e vá colocando os parafusos onde os pontos coincidirem com a furação. Muito simples mas bastante prático. :)

 

index_html_444b9d86

 index_html_m5769377a

É importante apertar os parafusos de suporte usando uma chave torx, para que eles continuem no lugar depois de parafusar e desparafusar a placa-mãe. Se não forem bem apertados, os parafusos de suporte acabam saindo junto com os usados para prender a placa-mãe ao removê-la, o que não é muito agradável.

index_html_27911392

 

Antes de instalar a placa-mãe, você pode aproveitar para encaixar os conectores do painel frontal do gabinete e das portas USB frontais, que são muito mais fáceis de encaixar com a placa-mãe ainda sobre a mesa, do que com ela já instalada dentro do espaço apertado do gabinete, com pouca luz.

Infelizmente, não existe muita padronização nos contatos do painel frontal, cada fabricante faz do seu jeito. Embora o mais comum seja que os pinos fiquem no canto inferior direito da placa, até mesmo a posição pode mudar de acordo com a placa. Em muitas ele fica mais para cima, quase no meio da placa.

Nos gabinetes ATX, temos basicamente 5 conectores: Power SW (o botão liga/desliga), Reset SW (o botão de reset), Power LED (o led que indica que o micro está ligado), HD LED (o led que mostra a atividade do HD) e o speaker:

 

 

index_html_m71f47ef0

Cada um dos contatos é formado por dois pinos, um positivo e um neutro. Nos conectores, o fio colorido corresponde ao positivo e o branco ao neutro. Tanto os dois botões, quanto o speaker (que usa um conector de 4 pinos, embora apenas 2 sejam usados) não possuem polaridade, de forma que podem ser ligados em qualquer sentido. Os LEDs por sua vez, precisam ser ligados na polaridade correta, caso contrário não funcionam.

Quase sempre, a própria placa traz uma indicação resumida decalcada, indicando inclusive as polaridades, mas em caso de dúvidas você pode dar uma olhada rápida no manual, que sempre traz um esquema mais visível:

index_html_5203c641

Em micros antigos, ainda na época dos gabinetes AT, existiam também os conectores Keylock (uma chave no gabinete que permitia travar o teclado), Turbo SW (a chave do botão "turbo") e o Turbo LED (o LED correspondente).

O botão "turbo" é uma história curiosa. Ele surgiu com o lançamento dos primeiros micros 286 e tinha a função de reduzir a freqüência de operação do processador, fazendo com que o micro ficasse com um desempenho similar ao de um XT (o micro operava à freqüência normal apenas enquanto o botão estivesse pressionado).

Isso permitia rodar alguns jogos e outros programas que ficavam rápidos demais se executados no 286. Por algum motivo, o botão "turbo" continuou presente nos gabinetes AT até a época dos micros Pentium, embora não fosse mais usado.

Outra curiosidade era o mostrador do clock, também usado na época dos micros Pentium 1. Ele tinha uma função puramente decorativa, mostrando a freqüência de operação do processador. O engraçado era que ele não tinha relação nenhuma com a freqüência real. Era simplesmente um painel digital, configurado através de jumpers, onde você podia colocar a freqüência que quisesse. Felizmente ele também saiu de moda e não é mais usado nos gabinetes atuais.

 

index_html_62beb63c

 index_html_5d047d24

Em seguida, temos os conectores das portas USB frontais, também conectados diretamente na placa-mãe. Eles precisam ser encaixados com atenção, pois inverter os contatos das portas USB (colocando o pólo positivo de alimentação na posição do negativo de dados, por exemplo) vai fazer com que pendrives, mp3players e outros dispositivos eletrônicos conectados nas portas USB sejam queimados, um problema muito mais grave do que deixar parafusos soltos ou inverter a polaridade de um LED, por exemplo.

Os conectores USB (ou headers USB) na placa-mãe são conectores de 9 pinos, facilmente reconhecíveis. Cada porta USB utiliza 4 pinos, dois para a alimentação e dois para dados, sendo que dentro de cada par, um é o positivo e o outro o negativo. O nono pino do conector serve apenas como orientação, indicando o lado referente aos dois fios pretos, referentes ao pólo neutro do par de alimentação:

 

 

index_html_m614abf3

Cada header USB inclui duas portas. Uma placa-mãe com "12 portas USB" normalmente inclui 4 portas no painel traseiro e mais 4 headers para a conexão das portas frontais do gabinete. Alguns gabinetes possuem 4 portas frontais, mas a maioria inclui apenas duas, Existem ainda diversos tipos de suportes com portas adicionais, leitores de cartões e outras bugigangas instaladas na baia do drive de disquetes, em uma das baias dos drives ópticos ou em uma das aberturas traseiras. Assim como as portas frontais, eles também são ligados nos headers USB da placa-mãe.

Dentro de cada header a ordem os fios é a seguinte: VCC (vermelho), DATA - (branco), DATA + (verde) e GND (preto), onde o GND fica sempre do lado do nono pino, que serve como guia. Ligue primeiro os pinos da porta 1, para não arriscar misturá-los com os da segunda porta. :)

Fazendo isso com a atenção, não existe muito o que errar; o problema é que se você precisa montar vários micros, acaba tendo que fazer tudo rápido, o que abre espaço para erros.

index_html_55210c75
Instalação dos conectores das portas USB frontais do gabinete

A partir de 2007, a Asus passou a fornecer "agrupadores" para os conectores do painel e das portas USB frontais junto com as placas. Eles são práticos, pois ao invés de ficar tentando enxergar as marcações na placa-mãe você pode encaixar os conectores no suporte e depois encaixá-lo de uma vez na placa-mãe:

 

index_html_m124b5040

index_html_51613a38

 

Antes de instalar a placa-mãe dentro do gabinete, você pode aproveitar também para instalar o processador, o cooler e os módulos de memória.

Com exceção dos antigos Pentium e Athlon em formato de cartucho, todos os processadores são ligados ao chipset e demais componentes da placa-mãe através de um grande número de pinos de contato. Como o encapsulamento do processador é quadrado, seria muito fácil inverter a posição de contato (como era possível nos 486), o que poderia inutilizar o processador quando o micro fosse ligado e a alimentação elétrica fornecida pela placa-mãe atingisse os pinos errados.

Para evitar isso, todos os processadores atuais possuem uma distribuição de pinos que coincide com a do soquete em apenas uma posição. Você pode notar que existe uma seta no canto inferior esquerdo deste Athlon X2, que coincide com uma pequena seta no soquete:

 

 

index_html_m59862f18

O encaixe do processador é genericamente chamado de "ZIF" (zero insertion force), nome que indica justamente que você não precisa fazer nenhuma pressão para encaixar o processador. A própria ação da gravidade é suficiente para encaixá-lo no soquete. O ideal é simplesmente segurar o processador alguns milímetros acima do soquete e simplesmente soltá-lo, deixando que a lei da gravidade faça seu trabalho. Isso evita que você entorte os pinos se estiver sonolento e tentar encaixar o processador no sentido errado.

index_html_m2cdaa856

Danos aos pinos do processador são desesperadores, pois é muito difícil desentortar os pinos. Se alguns poucos pinos forem entortados, sobretudo pinos nos cantos, você pode tentar desentortá-los usando uma lâmina, tentando deixá-los alinhados com os outros da fileira. Em alguns casos, um alicate de precisão também pode ajudar. O trabalho nunca vai ficar perfeito, mas você tem a chance de deixar os pinos retos o suficiente para que eles entrem no soquete, mesmo que seja necessário aplicar um pouco de pressão.

index_html_1cc5039d

O Athlon X2 e o Phenom X4 serão possivelmente os últimos processadores Intel/AMD para micros PCs a utilizarem o formato tradicional, com pinos. Desde o Pentium 4 com Core Prescott a Intel adotou o formato LGA, onde os pinos são movidos do processador para o soquete. A AMD utiliza um sistema semelhante no soquete-F utilizado pelos Opterons, Athlon Quad FX e Phenom FX e a tendência é que ele substitua as placas AM2, AM2+ e AM3 nos próximos anos.

A boa notícia é que no sistema LGA não existem mais pinos para serem entortados no processador, de forma que ele torna-se um componente muito resistente mecanicamente. A má é que agora temos um grande número de pinos ainda mais frágeis no soquete da placa-mãe, o que demanda ainda mais cuidado ao instalar o processador. Diferentemente dos pinos dos processadores tradicionais, os pinos do soquete LGA são praticamente impossíveis de desentortar. Ao danificar um grande número deles, você simplesmente condena a placa-mãe.

index_html_1c41bf63

A melhor estratégia continua sendo suspender o processador apenas alguns milímetros acima dos pinos de contato e simplesmente soltá-lo, deixando o resto por conta da gravidade. Assim você minimiza a possibilidade de danificar os pinos. No caso dos processadores soquete 775, duas guias de um dos lados do soquete impedem que o processador seja encaixado na direção errada. Olhando com atenção, você verá também uma seta em baixo relevo no canto inferior esquerdo do soquete, que faz par com a seta decalcada em um dos cantos do processador.

index_html_m3de36856

Outra mudança trazida pelo sistema LGA é que a pressão necessária para manter o processador no lugar é feita pelo próprio soquete, e não mais pelo cooler. Isso faz com que a força necessária para fechar a alavanca do soquete nas placas soquete 775 seja muito maior.

index_html_m33374629

Com o processador instalado, o próximo passo é usar a boa e velha pasta térmica para melhorar a condutividade térmica com o cooler. Hoje em dia, existe diversos tipos de pasta térmica, que vão desde a boa e velha pasta térmica banca, à base de óxido de zinco, que é bem barata e muitas vezes vendida em tubos de 50 gramas ou mais até diversos tipos de pasta térmica "premium" com diferentes compostos, vendidas em seringas ou vidros. Os próprios coolers muitas vezes acompanham envelopes de pasta térmica branca.

index_html_m28a2599e

Usar uma pasta "premium", baseada em algum composto metálico normalmente reduz a temperatura de operação do processador em dois ou até três graus em relação a usar alguma pasta branca genérica. A diferença é maior em overclock mais extremos, onde a dissipação térmica do processador (e conseqüentemente a temperatura de funcionamento) é mais elevada.

Se você já está gastando mais no cooler e na placa-mãe, pensando justamente em recuperar o investimento com um overclock agressivo, então gastar 20 reais em uma seringa de pasta Arctic Silver, para ganhar mais dois ou três graus faz sentido. Mas, ao montar um micro de baixo custo, onde você conta os trocados para conseguir colocar 512 MB de memória, vale mais à pena aproveitar a dose de pasta branca que veio de brinde com o cooler ou usar pasta branca genérica. O mais importante é não cair em modismos e deixar alguém te passar a perna tentando cobrar 40 ou 50 reais por um vidro de pasta térmica que não vai fazer milagres.

Independentemente do tipo escolhido, a idéia básica é passar uma fina camada de pasta térmica cobrindo todo o dissipador do processador. Se você simplesmente esparramar um montinho de pasta sobre o processador, a pressão exercida pelo cooler vai se encarregar de espalhá-la cobrindo a maior parte do dissipador de qualquer forma, mas a aplicação nunca fica perfeita, de forma que se você tiver tempo para espalhar a pasta uniformemente, antes de instalar o cooler, o resultado será sempre um pouco melhor. Aplicar uma camada de pasta é especialmente importante nos processadores LGA, pois neles o cooler não exerce uma pressão tão forte sobre o processador.

index_html_m23ebad9a

Muitos coolers, sobretudo os coolers dos processadores boxed vem com uma camada de pasta térmica (quase sempre cinza) pré-aplicada. O principal objetivo é a praticidade, já que elimina uma das etapas da instalação do cooler.

Caso prefira utilizar sua própria pasta térmica, remova a camada pré-aplicada no cooler usando uma flanela e álcool isopropílico. Não use espátulas ou qualquer outro objeto metálico, pois você vai arranhar a base do cooler, o que também prejudica a dissipação de calor.

O maior problema é que muitos coolers (em sua maioria fabricadas entre 2001 e 2005) utilizavam uma camada de elastômero (um tipo de borracha, que podia ser rosa, cinza, ou mesmo branca), no lugar da pasta térmica. Ele é um material que derrete se aquecido a temperaturas superiores a 60 graus, de forma que a pressão do cooler acaba moldando-o ao processador.

O elastômero não é tão eficiente quanto a pasta térmica (mesmo se comparado à pasta branca comum) e tem a desvantagem de ser descartável, precisando ser substituído depois da primeira remoção do cooler. Ele era usado por que era barato e era considerado "bom o bastante" pelos integradores e não por ser realmente eficiente.

É fácil reconhecer o elastômero, pois ele tem aspecto e consistência de chiclete. É sempre recomendável removê-lo e substituí-lo por pasta térmica antes de instalar o cooler. Ao se deparar com um cooler com a camada de elastômero ao dar manutenção, remova sempre toda a camada antiga antes de aplicar a pasta e reinstalar o cooler. Misturar os dois materiais acaba resultando em uma camada ainda mais ineficiente.

Cooler

Montagem de micros

Para manter o processador firme no lugar (evitando mal contatos nos pinos) e eliminar o excesso de pasta térmica o cooler precisa pressionar o processador com uma certa pressão. Na maioria dos coolers antigos, você precisava da ajuda de uma chave de fenda para instalar e remover o cooler. A ponta era presa em um pequeno encaixe na presilha do cooler e você precisava de uma boa dose de força para encaixá-la no soquete:

index_html_m1051e204

Este sistema levava a acidentes, pois com freqüência a chave de fenda escapava, muitas vezes destruindo trilhas e inutilizando a placa-mãe. Como a pressão era exercida sobre os pinos laterais do soquete, também às vezes acontecia deles quebrarem. Para não ter que descartar a placa-mãe, você acabava sendo obrigado a fazer algum "chunxo" para prender ou colar o cooler no soquete.

Para solucionar estes dois problemas, tanto a Intel quanto a AMD desenvolveram novos sistemas de encaixe.

A AMD passou a usar uma "gaiola" plástica em torno do processador. Os pinos de encaixe ficam na gaiola, que é presa à placa por dois ou quatro parafusos e pode ser substituída em caso de quebra. O cooler é encaixado através de um sistema de alavanca, onde você encaixa a presilha dos dois lados e usa a alavanca presente no cooler para prendê-lo ao soquete:

 

index_html_74967e17

 index_html_m1af38

Nas placas soquete 775, a pressão necessária para manter o processador preso é exercida pelo encaixe metálico incluído no próprio soquete. A Intel se aproveitou disso para desenvolver um sistema de encaixe bastante engenhoso, onde o cooler exerce menos pressão sobre a placa-mãe e é preso por 4 presilhas.

As presilhas utilizam um sistema de retenção peculiar. Girando o prendedor no sentido horário (o sentido oposto à seta em baixo relevo) você o deixa na posição de encaixe, pronto para ser instalado. Girando no sentido anti-horário, o prendedor de solta, permitindo que o cooler seja removido:

 

index_html_1c785b22

 index_html_27cd0593

Ao instalar o cooler, você só precisa deixar as presilhas na posição de instalação e pressioná-la em direção a placa. Ao contrário dos coolers para placas soquete 754, 939 e AM2, você pode encaixar o cooler em qualquer sentido.

A forma correta de instalar o cooler é ir encaixando uma das presilhas de cada vez, fazendo um "X", onde você encaixa primeiro a presilha 1, depois a 3, depois a 2 e por último a 4.

É bem mais fácil instalar o cooler, antes de instalar a placa-mãe dentro do gabinete:

 

index_html_m131d5ed9

 index_html_313f8269

Outra forma de instalar o cooler seria pressionar as 4 presilhas de uma vez, usando as duas mãos, com a placa já instalada dentro do gabinete. Esta segunda opção faz com que seja exercida uma grande pressão sobre a placa-mãe, o que é sempre bom evitar.

Com o cooler instalado, não se esqueça de instalar o conector de alimentação do cooler. As placas atuais oferecem pelo menos dois conectores de alimentação; uma para o cooler do processador e outro para a instalação de um exaustor frontal ou traseiro. Muitas placas oferecem 3 ou 4 conectores, facilitando a instalação de exaustores adicionais.

Para remover o cooler, basta girar as presilhas no sentido anti-horário, destravando o mecanismo. É mais fácil fazer isso usando uma chave de fenda:

index_html_m1d595d45

Um problema que temos no Brasil é o uso dos famigerados (para não usar um adjetivo pior) adesivos de garantia, usados por muitos distribuidores. Antigamente, eles costumavam ser colados na parte inferior do processador, mas com o lançamento dos processadores soquete 939, AM2 e LGA 775, onde não existe espaço na parte inferior, muitos distribuidores e lojas passaram a colar adesivos sobre o spreader do processador, o que prejudica brutalmente o contato entre o processador e o cooler, causando problemas de superaquecimento.

Como você pode ver na foto, os adesivos formam uma "cratera" de área sem contato com o cooler em torno deles. Para amenizar o problema, você acaba tendo que usar mais pasta térmica, o que também é ruim, já que para ser eficiente, a camada de pasta térmica deve ser o mais fina possível. Por serem feitos de material plástico, os próprios adesivos não conduzem bem o calor, agravando ainda mais o problema:

index_html_m1d47521b
Os famigerados adesivos de garantia, que prejudicam o contato com o cooler

Na maioria dos casos, fornecedores com conhecimento de causa e preocupados com a qualidade não fazem esse tipo de coisa, até por que, é perfeitamente possível controlar as trocas dos processadores utilizando a numeração usada tanto pela Intel, quanto pela AMD. Em casos onde o fornecedor for irredutível com relação ao uso dos adesivos, recomendo que procure outro.

Com relação à alimentação, existem dois tipos de conectores para o cooler. Além do conector tradicional, com 3 pinos, existe o conector PWM, que possui 4 pinos. Ele foi introduzido pela Intel em 2004 e é usado na maioria das placas atuais (tanto para processadores Intel quanto AMD). O conector de 4 pinos é perfeitamente compatível com coolers que utilizam o conector antigo de 3 e você também pode conectar coolers que utilizam o conector de 4 pinos em placas com o conector de 3 pinos sem risco. A guia presente em um dos lados do conector impede que você encaixe o conector invertido ou ocupando os pinos errados, por isso não existe o que errar:

index_html_m36c87b73

No conector de 3 pinos, dois deles são responsáveis pela alimentação elétrica (+12V e GND), enquanto o terceiro é usado pela placa-mãe para monitorar a velocidade de rotação do cooler (speed sensor). O quarto pino permite que o BIOS da placa-mãe controle a velocidade de rotação do cooler (PWM pulse), baseado na temperatura do processador. Com isso o cooler não precisa ficar o tempo todo girando na rotação máxima, o que além de reduzir o nível de ruído do micro, ajuda a economizar energia.

Ao conectar um cooler com o conector de 4 pinos em uma placa com o conector de 3, você perde o ajuste da rotação, de forma que o cooler simplesmente passa a girar continuamente na velocidade máxima, mas com exceção disso não existe problema algum.

Além do cooler principal, temos a questão dos exaustores extra, que são um ítem cada vez mais importante nos PCs atuais. Alguns exaustores ainda utilizam conectores molex, como os utilizados pelo HD, mas a grande maioria dos de fabricação recente podem ser ligados aos conectores oferecidos pela placa-mãe. A vantagem de utilizá-los é que a placa-mãe pode monitorar as velocidades de rotação dos exaustores, permitindo que você as monitore via software.

Esta placa da foto, por exemplo, possui 4 conectores, sendo que dois foram posicionados próximos às portas SATA:

index_html_245c1e17

 

Continuando, você pode aproveitar também para instalar os módulos de memória com a placa ainda fora do gabinete. O chanfro do conector impede que você encaixe um módulo DDR2 (ou DDR3) em uma placa que suporte apenas módulos DDR ou vice-versa, de forma que a principal dica é segurar sempre os módulos pelas bordas, evitando assim qualquer possibilidade de danificá-los com estica:

index_html_m15f406ac

Além da posição do chanfro, outra forma de verificar rapidamente qual o tipo de memória utilizado pela placa, é verificar a tensão, decalcada próximo ao chanfro. Módulos DDR utiliza 2.5V, módulos DDR2 utilizam 1.8V e módulos DDR3 utilizam 1.5V:

index_html_53a8effb

Em placas com4 slots de memória, o primeiro e o terceiro slots formam o canal A, enquanto o segundo e o quarto formam o canal B. Para usar dois módulos em dual-channel, você deve instalar o primeiro módulo o primeiro slot e o segundo módulo no segundo, populando simultaneamente ambos os canais. Em caso de dúvidas sobre a instalação em alguma placa específica, você pode confirmar a posição correta na seção "Memory" ou "System Memory" do manual.

Outra observação é que não é obrigatório usar dois módulos em placas dual-channel. O uso de dois módulos é desejável do ponto de vista do desempenho, mas a placa funciona perfeitamente com apenas um.

As exceções ficam por conta das antigas placas para Pentium 4 que utilizavam módulos de memórias Rambus. Nelas era realmente obrigatório instalar módulos RIMM em pares e usar terminadores nos soquetes não utilizados. Também é preciso usar módulos em pares em placas soquete 7 antigas, que utilizam módulos de 72 vias.

 

Depois de tudo isso, podemos finalmente instalar a placa dentro do gabinete, prendendo-a nos suportes usando parafusos. Na verdade, você pode instalar a placa logo no início da montagem, e encaixar o processador, cooler, memória e os conectores do painel frontal com ela já dentro do gabinete. A questão é que é bem mais fácil instalar estes componentes com a placa "livre" sobre a bancada do que dentro do espaço apertado no gabinete.

Uma chave magnética ajuda bastante na hora de posicionar os parafusos. Lembre-se que você pode transformar qualquer chave de fenda em uma chave magnética usando um pequeno ímã de neodímio, como os encontrados dentro do mecanismo que movimenta a cabeça de leitura do HD. Cuide apenas para não largá-los sobre mídias magnéticas, como disquetes ou o próprio HD.

Não se esqueça também de encaixar a tampa do painel ATX que acompanha a placa antes de instalá-la:

index_html_3b7f00ee

O próximo passo é ligar os conectores de força na placa-mãe. Praticamente todas as placas atuais utilizam tanto o conector ATX de 24 pinos e o conector P4, de 4 pinos, que fornece a energia adicional, reforçando o fornecimento elétrico para o processador e também para o slot PCI Express x16. Ao montar qualquer PC atual, você deve utilizar uma fonte de pelo menos 450 watts, que ofereça ambos os conectores:

index_html_m15e82a9

Lembre-se de que 90% das fontes vendidas no Brasil são produtos de baixa qualidade. Mesmo que a etiqueta diga que a fonte é capaz de fornecer 450 watts, é bem provável que ela na verdade ofereça apenas 350 watts ou menos, por isso é importante manter uma boa margem de segurança.

Voltamos então à velha pergunta: o que fazer com fontes antigas, que oferecem apenas 300 ou 350 watts e ainda utilizam o conector ATX de 20 pinos? A resposta curta é que você não deve usá-las ao montar um PC novo, pois não vale a pena arriscar a saúde dos demais componentes para economizar os 50 ou 70 reais de uma fonte nova. A resposta longa é que a maioria das placas funciona usando um conector ATX de 20 pinos, desde que o conector P4 auxiliar esteja conectado. Entretanto, isto reduz o fornecimento elétrico da placa-mãe, o que pode causar problemas ao utilizar processadores e/ou placas 3D com um consumo elétrico mais elevado.

Algumas placas possuem um conector molex ao lado do conector P4 auxiliar. Esta combinação era comum por volta de 2001 a 2002, quando as fontes com o conector extra ainda não eram comuns. Neste caso, você pode escolher qual dos dois usar:

index_html_7aa3e147

 

O próximo passo é instalar os drives. Alguns gabinetes são espaçosos o suficiente para que você instale os HDs antes mesmo de prender a placa-mãe, mas na maioria dos casos eles ficam parcialmente sobre a placa, de forma que você precisa deixar para instalá-los depois.

Ao usar drives IDE, você precisa se preocupar também com a configuração de master/slave. No caso do drive óptico (vou adotar este termo daqui em diante, já que você pode usar tanto um drive de CD quanto de DVD), o jumper está disponível bem ao lado do conector IDE. Colocá-lo na posição central configura o drive como slave, enquanto colocá-lo à direita configura o drive como master. Para o HD, a configuração do jumper varia de acordo com o fabricante, mas você encontra o esquema de configuração na etiqueta de informação do drive. Quase sempre, o HD vem configurado de fábrica como master e ao retirar o jumper ele é configurado como slave.

HDs SATA não utilizam jumpers de configuração de master/slave, pois cada porta permite a instalação de um único HD. Apesar disso, a maioria dos drives incluem um jumper que permite forçar o HD a operar em modo SATA/150 (evitando problemas de compatibilidade com algumas placas antigas). Em muitos HDs (como na maioria dos modelos da Seagate) ele vem ativado por padrão, fazendo com que o drive opere em modo SATA/150 por default. Ao usar uma placa equipada com portas SATA/300, não se esqueça de verificar a posição do jumper, para que a taxa de transferência da interface não seja artificialmente limitada.

 

index_html_m323d8f3a
Jumpers em um
HD IDE, HD SATA e drive de DVD IDE

Ao instalar o HD e o drive óptico em portas separadas, você pode configurar ambos como master. Atualmente é cada vez mais comum que placas novas venham com apenas uma porta IDE, o que o obriga a instalar um como master e o outro como slave. É comum também que o drive óptico seja instalado como slave mesmo ao ficar sozinho na segunda porta, já deixando o caminho pronto para instalar um segundo HD como master futuramente.

Ao usar dois (ou mais) HDs SATA, é importante que o HD de boot, onde você pretende instalar o sistema operacional, seja instalado na porta SATA 1. É possível mudar a configuração de boot através do setup, dando boot através dos outros HDs, mas o default é que o primeiro seja usado.

A identificação de cada porta vem decalcada sobre a própria placa-mãe. Na foto temos "SATA1" e "SATA2" indicando as duas portas SATA e "SEC_IDE", indicando a porta IDE secundária. Ao lado dela estaria a "PRI_IDE", a porta primária:

index_html_ma8fa9c9

Nas placas e cabos atuais, é usada uma guia e um pino de controle, que impedem que você inverta a posição da cabos IDE. Em placas e cabos antigos era comum que estas proteções não estejam presentes. Nestes casos, procure um número "1" decalcado em um dos lados do conector. A posição do "1" deve coincidir com a tarja vermelha no cabo e, do lado do drive, a tarja vermelha fica sempre virada na direção do conector de força:

index_html_m4643aef6

Os cabos IDE possuem três conectores. Normalmente dois estão próximos e o terceiro mais afastado. O conector mais distante é o que deve ser ligado na placa-mãe, enquanto os dois mais próximos são destinados a serem encaixados nos drives. Ao instalar apenas um drive no cabo, você deve usar sempre as duas pontas do conector, deixando o conector do meio vago (nunca o contrário).

Você deve utilizar sempre cabos de 80 vias em conjunto com os HDs IDE atuais, pois eles oferecem suporte aos modos ATA-66. ATA-100 e ATA-133. Os drives ópticos podem utilizar cabos comuns, de 40 vias, pois eles trabalham sempre em modo ATA-33.

Você deve receber os cabos IDE e SATA juntamente com a placa-mãe. Normalmente o pacote inclui também o cabo do disquete (embora hoje em dia seja cada vez mais raro usá-lo) e também um adaptador para converter um conector molex da fonte no conector de força SATA. A maioria das fontes oferece apenas um único conector de força SATA, de forma que você acaba precisando do adaptador ao instalar um segundo HD. Em placas que não possuem portas IDE, o cabo é substituído por um segundo cabo SATA.

index_html_703bfa8e
"Kit" com cabos e manuais que acompanha a placa-mãe

O drive óptico acompanha um segundo cabo IDE (quase sempre um cabo de 40 vias), permitindo que, ao usar um drive óptico e HD IDE, você os instale em portas separadas.

Aqui temos os cabos IDE e SATA instalados. O cabo IDE preto está instalado na IDE primária e vai ser usado pelo HD, enquanto o cinza, instalado na IDE secundária, vai ser usado pelo drive óptico:

index_html_m540a288

Ao instalar dois ou mais HDs na mesma máquina, deixe sempre que possível um espaço de uma ou duas baias entre eles, o que ajuda bastante na questão da refrigeração:

index_html_m200ef873

Assim como em outros componentes, a temperatura de funcionamento dos HDs tem um impacto direto sob a sua via útil. O ideal é que a temperatura de operação do HD não ultrapasse os 45 graus (você pode monitorá-la usando o programa de monitoramento incluído no CD de drivers da placa, ou usando o lm-sensors no Linux), mas, quanto mais baixa a temperatura de funcionamento, melhor.

Caso tenha alguns trocados disponíveis, uma medida saudável é instalar um exaustor na entrada frontal do gabinete, puxando o ar para dentro. O fluxo de ar vai não apenas reduzir a temperatura de operação dos HDs (muitas vezes em 10 graus, ou mais) mas também dos demais componentes do micro, incluindo o processador. Para melhores resultados, o exaustor frontal deve ser combinado com outro na parte traseira, na abertura ao lado do processador, desta vez soprando o ar para fora.

Para instalar o exaustor frontal, você precisa remover a frente do gabinete. Em muitos dos modelos atuais, ela é apenas encaixada, de forma que basta puxar com cuidado. Em outros ela é presa com parafusos, escondidos nas latarias.

index_html_225e7c2e

É sempre chato ficar colocando parafusos dos dois lados, tanto para os HDs, quanto para o drive óptico, mas é importante que você resista à tentação de instalar os drives "nas coxas", sem usar todos os parafusos. A questão fundamental aqui é a vibração. Colocando parafusos apenas de um lado, ou colocando apenas um de cada lado, a movimentação da cabeça de leitura dos HDs e do drive óptico vão fazer com que o drive vibre dentro da baia, aumentando o nível de ruído do micro, sem falar de possíveis problemas relacionados ao desempenho ou mesmo à vida útil dos drives.

index_html_1977666f

O toque final é instalar o cabo de áudio do drive de CD, usado para tocar CDs de áudio. Hoje em dia ele não é mais tão usado, pois a maioria dos programas é capaz de reproduzir CDs obtendo as faixas digitalmente, a partir do próprio cabo de dados do drive (o mesmo processo usado para ripar CDs), mas é sempre bom ter o cabo instalado, já que você nunca sabe que programas o dono do micro vai utilizar. O cabo é fornecido junto com o drive e é encaixado na entrada "CD" da placa-mãe, um conector de 4 pinos.

 

index_html_m7497d473

 index_html_m7912d3ea

Finalizando

 

 

Como disse a pouco, é importante instalar um exaustor na abertura traseira do micro, soprando o ar para fora. O exaustor dentro da fonte de alimentação também faz este trabalho, mas a principal função dele é resfriar a própria fonte. O exaustor traseiro age mais diretamente, empurrando pra fora rapidamente o ar quente que já passou pelo cooler do processador.

A maioria dos gabinetes atuais inclui um tubo (chamado de "túnel de vento" pelos fabricantes) que vai sobre o processador. O tubo canaliza o ar externo, fazendo com que o cooler do processador utilize o ar frio vindo de fora, ao invés de ficar simplesmente circulando o ar quente dentro do gabinete.

Nesta configuração, o ar entra pelo tubo, refrigera o processador e sai pelo exaustor traseiro (e pela fonte), criando um sistema de circulação bastante eficiente. Se você instalar também o exaustor frontal, melhor ainda.

index_html_15bc5e10

Concluindo, falta apenas instalar a placa de vídeo e outras placas de expansão (como uma segunda placa de rede, modem ou uma placa de captura) e a montagem está completa.

index_html_m4bc17f74

Alguns poucos gabinetes utilizam protetores independentes para as aberturas dos slots, mas na maioria é usada uma simples chapa cortada, onde você precisa remover as tampas dos slots que serão usados. Algumas sempre esbarram em capacitores da placa-mãe, por isso precisam ser removidas com mais cuidado. O aço cortado é praticamente uma lâmina, é bem fácil se cortar.

index_html_m1c04508b

Tanto os slots PCI Express x16, quanto os slots AGP, utilizam um sistema de retenção para tornar o encaixe da placa de vídeo mais firme. Ao remover a placa, não se esqueça de puxar o pino do lado direto do slot, senão você acaba quebrando-o.

index_html_m22b92217

Toda placa-mãe inclui pelo menos um jumper, o jumper responsável por limpar o CMOS (CLR_CMOS ou CLRTC). Em muitas placas, ele vem de fábrica na posição discharge (com o jumper entre os pinos 2 e 3), para evitar que a bateria seja consumida enquanto a placa fica em estoque. A maioria das placas não dão boot enquanto o jumper estiver nesta posição, o que pode ser confundido com defeitos na placa.

Antes de ligar o micro, certifique-se que o jumper está na posição 1-2 (indicada no manual como "Normal" ou "Default").

 

Solucionando problemas de montagem

 

Este é um tutorial básico que ensina a solucionar problemas comuns de montagem. Ele inclui também informações sobre os códigos de erros do BIOS, como testar a memória e outras dicas.

 

 

Seguindo os cuidados básicos, montar micros é relativamente simples. A grande maioria dos componentes pode ser encaixado apenas de um jeito e existem travas e chanfros nos encaixes que evitam muitas combinações de componentes incompatíveis, como encaixar um pente DDR em uma placa que só suporta módulos DDR2.

Embora a qualidade geral dos componentes seja melhor hoje do que era em 2000 ou 2002, por exemplo, componentes com defeitos de fabricação ainda são uma ocorrência comum. Em inglês, eles são chamados de "DOA" (dead on arrival), ou seja, já são vendidos com defeito, devido a danos ocorridos durante o transporte, ou falta de controle de qualidade por parte do fabricante.

Embora possam ser trocados dentro da garantia, na maioria das vezes sem dificuldades, estes componentes defeituosos acabam causando dor de cabeça para quem monta micros, já que além do tempo necessário para diagnosticar o problema, você perde tempo para trocar a peça.

Antes de mais nada, comece fazendo uma verificação geral, chegando se os conectores da ponte estão bem encaixados na placa mãe e se o conector P4 está instalado (a maioria das placas atuais não inicializa com ele desconectado), se a placa de vídeo e outros periféricos estão bem encaixados, se todos os cabos IDE e SATA estão em ordem e se os botões do gabinete estão ligados nos pinos corretos do painel da placa mãe. Se você está usando um nobreak ou estabilizador, experimente também tentar ligar o micro sem ele.

Depois de excluir as possibilidades mais óbvias, o procedimento padrão para solucionar problemas é desconectar todos os dispositivos não essenciais, deixando apenas a placa, processador (e cooler! :), um dos pentes de memória e (no caso das placas se vídeo on-board) também a placa de vídeo. Se o micro passar a completar o POST, você pode voltar a instalar os demais componentes um a um até achar o culpado. Muitas vezes você vai acabar descobrindo que o problema era simplesmente mal contato em algum dos encaixes.

Você pode também fazer isso logo no início da montagem, fazendo um teste inicial depois de ligar apenas os componentes essenciais (placa mãe, processador, cooler, memória, teclado e monitor). Você pode montar a placa mãe sobre a própria caixa e o plástico antiestático e usar uma chave Philips para ligar a placa, fechando o contato entre os dois pólos do conector "Power SW" do painel para os botões do gabinete:


fig1


Experimente também mudar as placas de posição. É muito comum que uma placa não seja detectada ao ser plugada em um determinado slot, ou mesmo faça com que o micro simplesmente para de inicializar, mas funcione perfeitamente em outro. Isto pode ocorrer por defeitos nos contatos do slots, oxidação (no caso de micros usados) ou simplesmente por mal contato ao instalar a placa no primeiro slot.

Verifique também se você não esqueceu de conectar o conector P4. Na maioria das placas mãe com o conector, ele é obrigatório; a placa simples não liga se ele estiver desconectado:


fig2


Ao dar manutenção em micros antigos, é importante também limpar os contatos das placas e dos módulos de memória, já que a oxidação dos contatos é uma das principais causas de mal contato. A limpeza pode ser feita usando uma borracha de vinil ou, na falta de uma, usando uma cédula em bom estado que tiver no bolso. O papel moeda é abrasivo, por isso também funciona bem como limpador de contatos.

Se, por outro lado, o micro não liga nem mesmo na "configuração mínima", comece verificando a posição do jumper Clear CMOS e outras coisas básicas.

Em muitas placas, ele vem de fábrica na posição discharge (com o jumper entre os pinos 2 e 3), para evitar que a bateria seja consumida enquanto a placa fica em estoque. A maioria das placas não dão boot enquanto o jumper estiver nesta posição, o que pode ser confundido com defeitos na placa:


fig3


Experimente também limpar as configurações do Setup, removendo a bateria e mudando o jumper Clear CMOS de posição por 15 segundos. Outra opção para limpar as configurações do Setup é usar uma moeda ou chave de fenda para fechar um curto entre os dois polos da bateria, também por 15 segundos:



fig4


A partir daí, o jeito é partir para a experimentação, trocando o módulo de memória, a fonte, memória, placas de vídeo, processador e por último a própria placa mãe, até descobrir o culpado.

Embora estejam longe de serem um indicador preciso, os códigos de erro do BIOS, emitidos através do speaker podem dar pistas do que está errado em muitas situações:

1 bip curto: Este é o bip de confirmação emitido quando o POST é realizado com sucesso e nenhum erro é detectado.

nenhum bip: Se os coolers giram, mas micro não inicializa e nenhum bip é emitido (e você já verificou se o speaker está realmente conectado), temos muito provavelmente um problema grave na placa mãe ou processador. Isto também acontece ao tentar ligar o micro sem o processador ou sem nenhum módulo de memória instalado. Se realmente nada funciona (os coolers não giram, nenhum sinal de vida) então provavelmente o problema está na fonte (ou estabilizador, ou qualquer outro ponto da instalação elétrica) ou mesmo no botão de força do gabinete (você pode tê-lo ligado nos pinos errados da placa mãe, por exemplo).

2 bips: Este é uma espécie de "erro geral", similar a uma tela azul do Windows. O POST falhou por uma causa desconhecida.

1 bip longo e 1 bip curto: Problema na placa mãe.

1 bip longo e 2 bips curtos ou 1 bit longo e três curtos: Problemas na placa de vídeo (ou falta dela). É muito comum que a placa de vídeo esteja ok, porém mal encaixada ou com os contatos oxidados. Experimente remover a placa, limpar os contatos usando uma borracha de vinil ou uma cédula e instalá-la novamente. A maioria das placas continua o boot depois de emitir o erro, permitindo que você acesse o micro via rede, mas muitas realmente não inicializam até que você resolva o problema.

3 bips longos: Erro no teclado. Este erro é relativamente raro. Ele não é emitido quando o teclado não está instalado, mas sim quando ele está presente, mas o controlador está com algum defeito ou curto circuito.

2 (ou mais) bips longos: Problema grave nos módulos de memória RAM. Este erro é gerado apenas quando o módulo de memória está instalado, mas é detectado um erro nos primeiros 64 KB, ou quando ele não passa pelo teste de contagem de memória do BIOS. É raro que um pente de memória realmente chegue a ficar danificado a ponto de causar este erro (danos nos módulos, causados por estática são geralmente mais discretos, afetando apenas uma pequena faixa de endereços dentro do módulo), o mais comum é que exista algum problema inesperado de compatibilidade entre ele e a placa mãe. Antes de mais nada, teste o micro usando um módulo diferente (se possível de outro fabricante) e teste o módulo que causou o erro em outra placa diferente. É bem possível que ambos estejam bons.

5, 6 ou 7 bips curtos: O processador está encaixado, mas com algum dano grave. Em algumas placas este erro é emitido também quando o processador está superaquecendo (o cooler está mal encaixado ou não está instalado, por exemplo).

9 bips: Erro na gravação do BIOS, ou danos no chip de memória flash onde ele está gravado. Também não é um erro comum, pois quando você tenta fazer um upgrade de BIOS e ele é mal sucedido, a placa simplesmente deixa de funcionar, ou inicializa utilizando algum sistema de proteção incluído pelo fabricante. Erros físicos no chip de memória flash são bastante raros.


Vamos a uma pequena lista dos sintomas relacionados a defeitos em cada componente:


Placa de vídeo: As placas 3D atuais são praticamente computadores completos, que possuem não apenas um processador (a GPU), mas também memória e circuitos de alimentação próprios. Muitas placas inclusive obtém energia diretamente da fonte, através e um conector molex ou PCI Express de 6 pinos.

Os problemas mais comuns com as placas de vídeo são defeitos causados pelo desgaste dos capacitores, assim como no caso da placa mãe. O defeito começa se manifestando nos games mais pesados (quando o consumo elétrico da placa e conseqüentemente o stress sobre os capacitores é maior) e vai progredindo gradualmente até que a placa realmente pare de funcionar. Neste caso, é possível que o PC simplesmente não funcione com a placa espetada, que a placa mãe passe a emitir bips, como se não houvesse placa de vídeo, ou que o micro inicializa normalmente, mas nenhuma imagem seja exibida no monitor.

Placas de vídeo também podem apresentar defeitos na memória. Se o defeito for na área reservada ao frame-buffer (mais raro) você notará corrupções na imagem, desde o início do boot. De os defeitos forem no bloco principal, reservado ao processamento 3D, você notará texturas corrompidas e, em muitos casos, também travamentos durante os games.

Assim como no caso do processador, podem existir casos de incompatibilidade entre placas de vídeo e placas-mãe específicas. Isto é relativamente raro nas placas PCI-Express que usamos atualmente, mas era comum ao tentar instalar placas AGP de fabricação recente em placas mãe antigas, que não possuíam circuitos de alimentação dimensionados para suportá-las.


HD: Defeitos no HD não impedem que a placa mãe realize o POST. O PC começa o boot normalmente, mas, por não detectar, ou não conseguir inicializar o HD, para no início do carregamento do sistema operacional. Entretanto, encaixar o cabo IDE invertido (o que é possível ao usar cabos antigos, sem o chanfro de proteção) faz com que o micro realmente deixe de inicializar.

Ao usar cabos sem a guia, procure um número "1" decalcado em um dos lados do conector. A posição do "1" deve coincidir com a tarja vermelha no cabo e, do lado do drive, a tarja vermelha fica sempre virada na direção do conector de força:


fig5


Os cabos IDE possuem três conectores. Normalmente dois estão próximos e o terceiro mais afastado. O conector mais distante é o que deve ser ligado na placa mãe, enquanto os dois mais próximos são destinados a serem encaixados nos drives. Ao instalar apenas um drive no cabo, você deve usar sempre as duas pontas do conector, deixando o conector do meio vago.

Defeitos nos cabos flat causam corrupção nos dados, o que gera sintomas parecidos com o de um HD com badblocks. Quando se deparar com problemas de leitura e gravação em HDs IDE, experimente antes de mais nada trocar o cabo.


Processador: É bastante raro que processadores novos apresentem defeitos. O controle de qualidade por parte de fabricantes como a Intel e AMD é normalmente muito bom, de forma que as chances de um processador sair de fábrica com defeitos é pequena. Danos durante o transporte também são incomuns, já que o processador é um componente pequeno e bastante resistente fisicamente. Danos causados pelo manuseio, como pinos entortados são também fáceis de perceber.

De qualquer forma, um processador defeituoso, ou danificado por estática, pode fazer com que o micro simplesmente não inicie o boot (já que a placa mãe precisa do processador para realizar o POST), o que é mais raro, ou que o micro funcione, mas apresente problemas de estabilidade diversos.

Note que existem muitos casos de incompatibilidade entre placas-mãe antigas e processadores lançados recentemente. Não existe nenhuma garantia de que uma placa mãe soquete 775, fabricada em 2005 será compatível com um Core 2 Duo, por exemplo. É comum que placas precisem de atualizações de BIOS para suportar processadores lançados após sua fabricação e, em muitos casos, existem incompatibilidades relacionadas aos circuitos de alimentação ou chipset usado na placa. Nestes casos, o micro pode simplesmente não iniciar o boot, como se o processador estivesse queimado, quando na realidade é a placa mãe que não está conseguindo inicializá-lo.

 

Acúmulo de pó: Todo o processo de resfriamento do micro é baseado na circulação de ar (mesmo ao usar um watter cooler, você precisa de pelo menos dois exaustores: um no radiador usado para refrigerar o fluído e outro na fonte de alimentação). Isso faz com que a fuligem e poeira do ar se acumule nos exaustores, parte interna da fonte e em outros componentes. A poeira acumulada prejudica a passagem do ar e a dissipação de calor, o que faz com que o micro passe a apresentar problemas de superaquecimento.

Os sintomas clássicos são que o micro inicializa de forma normal, mas trave após algum tempo ligado ou ao executar tarefas pesadas. Também é possível que a poeira feche contatos entre algumas trilhas, causando erros diversos. O PC pode passar a apresentar erros relacionados à corrupção de dados armazenados na memória, por exemplo, como se existisse um erro físico nos módulos.

A solução é simplesmente faz uma boa limpeza periódica, desmontando o micro completamente e usando ar comprimido ou um pincel para remover toda a sujeira. A fonte de alimentação também acumula muito pó, e também pode ser aberta e limpa. Entretanto, é importante tomar o cuidado de não encostar nos componentes, pois mesmo com a fonte desligada da tomada, os capacitores armazenam um volume considerável de energia.


Memória
: Existem muitos casos de incompatibilidades entre determinadas marcas de memória e alguns modelos de placas mãe. Quando o micro simplesmente não dá boot com um determinado módulo (mas funciona com outros), ou para de funcionar depois de instalar um módulo adicional, é bem provável que o módulo esteja bom e o problema seja simplesmente alguma incompatibilidade entre ele e a placa mãe.

Normalmente os fabricantes mantém listas de módulos testados, ou de fabricantes recomendados, mas elas não tem muita utilidade na prática, pois são sempre incompletas. O melhor é não se preocupar tanto com isso e escolher as memórias com base nas características técnicas, preço e reputação do fabricante e trocar os módulos dentro da garantia em casos onde eles não funcionem em conjunto com determinada placa mãe.

Outro tipo de defeito, mais comum, são endereços danificados no módulo. Eles podem ser causados por estática, picos de tensão, Defeitos na fonte ou nos circuitos de alimentação na placa mãe, ou mesmo desgaste prematuro causado pelo uso de tensões muito mais altas que o padrão (ao fazer overclock). Este tipo de dano não impede que o micro complete o POST boot e inicialize o boot de forma normal. Entretanto, você vai se deparar com travamentos e comportamento anormal dos programas sempre que os endereços defeituosos forem usados pelo sistema. Pode ser que os defeitos estejam logo nos primeiros endereços e o sistema operacional trave durante o boot, ou pode ser que esteja no final e problemas sejam notados apenas ao rodar vários programas simultaneamente.

A melhor forma de verificar o estado dos módulos é usar o Memtest. É sempre importante deixar o teste correndo por algum tempo depois de montar um novo micro, pois ele detecta erros não apenas nos módulos de memória, mas também no controlador de memória, trilhas e cachês do processador.

O Memtest pode ser encontrado em diversas distribuições Linux, como o Kurumin, Knoppix e Ubuntu (basta usar a opção "memtest" ou "Memory Test" na tela de boot) e também faz parte dos utilitários incluídos no Ultimate Boot CD (
http://www.ultimatebootcd.com) e estar disponível na forma de uma imagem .ISO no http://memtest86.com/.

O Memtest86 já vem pré-instalado em muitas distribuições, aparecendo como uma opção de boot no menu de boot. Você pode utilizar também o CD de uma versão recente do Knoppix ou do Kurumin, utilizando a opção "memtest" na tela de boot.


fig6


A grande vantagem do memtest86 sobre outros testes de memória é que além de pequeno, gratuito e de código aberto ele é quase automático. Você precisa apenas gravar um CD ou disquete e dar boot para que o teste seja iniciado automaticamente. Ele fica num loop eterno, repetindo os testes e indicando os erros que encontrar até que você se sinta satisfeito.

Existem duas opções de download. O mais prático é baixar uma imagem ISO, que pode ser usada para fazer um CD bootável. O arquivo tem apenas 64 kb compactado e 1.6 MB depois de descompactado.

No site você vai encontrar também os programas para gerar o disquete de boot no Windows e Linux. Tanto faz usar o CD ou o disquete, o programa é exatamente o mesmo. É necessário dar boot diretamente no Memtest para que ele possa testar realmente toda a memória do sistema. Se ele rodasse como um programa sobre o Linux, não teria como acessar áreas utilizadas pelo sistema e programas, e o teste não seria confiável.

O Memtest86 realiza um total de 9 testes. Os 5 primeiros são relativamente rápidos, mas os 4 testes finais são muito mais rigorosos, capazes de encontrar erros não detectados pelos testes iniciais, mas em compensação muito demorados. Os 8 testes são executados automaticamente, mas o nono (veja detalhes abaixo) precisa ser ativado manualmente, já que é muito demorado. O ideal é deixar o teste correndo em loop durante a madrugada e olhar os resultados no outro dia de manhã.

Se, por acaso, a tabela inicial do Memtest86 informar incorretamente a quantidade de memória, acesse a opção "3" (memory sizing) e a opção "3" (probe). Isso fará com que o Memtest86 detecte a memória, desprezando as informações do BIOS. Na tela principal, pressione a tecla 5 para ter um sumário com todos os erros encontrados em cada teste.


fig7

Basicamente é isto, não existe muita configuração a fazer. A alma do negócio é ter paciência e deixar ele fazer seu trabalho, se possível por tempo suficiente para realizar o teste longo.

Vamos entender o que faz cada um dos testes:

Teste 0 (Address test, walking ones, no cachê): Simplesmente testa o acesso a todos os endereços da memória, algo semelhante com o que o BIOS faz na contagem de memória durante o boot. Ele é o teste mais rápido e serve basicamente para checar a quantidade de memória disponível.

Teste 3 (Address test, own address): Este teste é semelhante ao 0, mas adota uma estratégia diferente, checando endereços e não apenas realizando uma contagem rápida. Isso permite detectar problemas de endereçamento no módulo. Outra diferença é que este teste é feito sem utilizar os cachês do processador, para evitar que ele mascare defeitos nos módulos.

Teste 2 (Moving inversions, ones&zeros): Escreve bits 1 e depois bits 0 em todos os endereços da memória. Este algoritmo também utiliza os cachês L1 e L2 do processador. É um teste rápido que identifica os erros mais grosseiros, onde algumas células do módulo estão realmente queimadas.

Teste 3 (Moving inversions, 8 bit pat): É aqui que os testes para detectar erros mais complexos começam. O terceiro teste escreve seqüências de dados de 8 bits, repetindo o teste 20 vezes com seqüências diferentes.

Teste 4 (Moving inversions, random pattern): Este teste é similar ao teste número 3, mas desta vez usando uma seqüência randômica de acessos, que é repetida um total de 60 vezes. Parece um grande exagero, já que este teste é destinado a identificar os mesmos erros que o teste 3, mas é justamente esta "insistência" e uso de diversas seqüências diferentes de operações que torna o memtest tão confiável na detecção de erros, capaz de detectar erros raros ou transitórios, que não aparecem em outros testes.

Teste 5 (Block move, 64 moves): É um pouco mais rigoroso que o teste 4. Continua movendo dados de um endereço para outro da memória, mas agora são movidos blocos de 4 megabits de cada vez. Este teste é repetido 64 vezes.

Teste 6 (Moving inversions, 32 bit pat): Os dados gravados em cada bit de memória são lidos e movidos para o endereço adjacente. É mais ou menos uma combinação dos três testes anteriores, pois testa o endereçamento, leitura e escrita de dados. A operação é repetida 32 vezes no total, para testar todas as combinações possíveis.
Este teste detecta um tipo de erro muito comum que é a "contaminação" de endereços. Isto ocorre quando por um defeito de fabricação o isolamento elétrico entre duas ou mais células de memória fica muito fino, permitindo que os elétrons saltem de um para o outro. Isso faz com que ao gravar um dos bits o outro também seja gravado com o mesmo valor. Esse tipo de problema pode ser bastante intermitente, acontecendo apenas quando o segundo bit estiver com um valor zero, ou apenas esporadicamente, daí a necessidade de tantas repetições.

Teste 7 (Random number sequence): Para eliminar qualquer dúvida, são agora escritas seqüências de números randômicos, preenchendo todos os endereços da memória. Os números são conferidos em pequenos blocos e o teste é repetido diversas vezes.

Teste 8 [Modulo 20, ones&zeros]: Este teste é basicamente uma repetição do teste 7, mas agora utilizando um algoritmo diferente, chamado "Modulo-X", que elimina a possibilidade de qualquer defeito ter passado desapercebido pelos testes anteriores por ter sido mascarado pelos cachês L1 e L2 ou mesmo pelos registradores do processador.
Note que tanto o teste 7 quanto o 8 são bastante demorados e servem apenas para detectar erros extremamente raros, eliminando qualquer dúvida sobre a saúde dos módulos. Eles foram criados realmente como um exercício de perfeccionismo.

Teste 9 (Bit fade test, 90 min, 2 patterns): Este é um teste final, que permite detectar erros raros relacionados com os circuitos de refresh, ou soft-erros causados por fatores diversos, que alterem os dados armazenados.

No teste, todos os endereços são preenchidos usando uma seqüência de valores pré-definidos. O programa aguarda 90 minutos e verifica os dados gravados, anteriormente. Estes dados são produzidos usando seqüências matemáticas, de forma que o programa só precisa repetir as mesmas operações na hora de verificar, sem precisar guardar uma cópia de tudo que gravou em algum lugar.

Em seguida, a mesma seqüência é gravada novamente, mas desta vez com os dígitos invertidos (o que era 1 vira 0 e o que era 0 vira 1). O programa aguarda mais 90 minutos e checa novamente.

Este teste demora mais de três horas, por isso não é executado automaticamente junto com os outros 8. Pense nele como um último refúgio para os paranóicos.
Para executá-lo, pressione "C", depois "1" (Test Selection) e em seguida "3" (Select Test). Na opção "Test Number [1-9]" pressione "9" e em seguida "0" (Continue).


Ao detectar um erro, a primeira providencia é trocar o módulo de memória e refazer o teste. Em alguns casos o problema pode não ser no módulo, mas sim na placa mãe. Em alguns casos mais raros pode ser até mesmo que tanto o módulo quanto a placa estejam bons, e o problema seja apenas algum tipo de incompatibilidade entre eles. Eu observei isso na Tyan Tiger MPX que testei em 2001. A placa só ficou completamente estável com o terceiro pente de memória que testei, sendo que os dois primeiros não tinham defeitos e passaram no teste do memtest86 depois de instalados em outros micros.

Um dos motivos era que esta placa utiliza um valor CAS de 2.5 ciclos (valor fixo), uma configuração incomum para a época. Assim como ela, muitas outras placas utilizam configurações incomuns, que podem causar incompatibilidades com memórias de algumas marcas. Jamais jogue fora um pente com erros antes de testá-lo em outra placa mãe diferente, pois ele pode estar bom.

Experimente também baixar a freqüência de operação da memória, ou do FSB para testar o pente em freqüências mais baixas que as nominais. Muitas vezes um pente danificado por estática ou por variações nas tensões fornecidas pela fonte pode deixar de funcionar estavelmente na freqüência máxima, mas continuar suportando freqüências mais baixas.

Outra dica é limpar cuidadosamente o módulo, removendo a poeira acumulada e limpando os contatos usando uma borracha de vinil (as borrachas de escola, do tipo que não esfarela). Na falta de uma, você também pode usar uma nota de real (com exceção das de R$ 10, que são de plástico) em bom estado. O papel moeda é abrasivo e realmente limpa os contatos na medida certa.

Aqui temos um módulo de 512 MB danificado por estática, flagrado pelo teste. Veja que foram identificados diversos endereços defeituosos. A lista mostra apenas os primeiros erros, mas pressionando a tecla "C" e depois "4" (error summary), é possível ver o número total. Neste caso, o módulo tinha nada menos do que 222 endereços defeituosos. Além de identificar os erros, o memtest mostra a partir de qual MB do módulo eles começam. Pelo screenshot, você pode ser que eles começam a partir do 433° MB:


fig8


No caso de módulos onde os erros aparecem logo nos primeiros endereços, não existe o que fazer, pois eles farão com que o sistema trave logo no início do boot. Módulos onde os defeitos se concentram no final (como este do exemplo) ainda podem ser usados para testes, pois o sistema acessa sempre a memória a partir do começo, deixando os últimos endereços do módulo por último. Enquanto você estiver rodando aplicativos leves e o sistema não acessar os endereços defeituosos do módulo, tudo funciona normalmente.

 

Se tudo mais falhar, verifique a chave de tensão da fonte. Por segurança, todas as fontes vem de fábrica com a posição no "220V", já que ligar a fonte chaveada para 220 em uma tomada de 110 não causa danos, bem diferente do que acontece ao fazer o contrário. O problema é que a lei de murphy faz com que você sempre esqueça de trocar a chave de posição, fazendo com que mais adiante o micro simplesmente não ligue e você fique sem saber o por que. :)


fig9